

Five tech trends shaping public safety in 2026

From signal to scene, advanced connectivity keeps decisions moving when conditions shift

Image courtesy of Adobe Stock

Table of contents

- 03 AI-powered crime prevention
- 04 Drone-based disaster response
- 05 Mobile command centers
- 06 Autonomous public safety systems
- 07 Next-generation networks
- 08 Conclusion

We've identified the top trends shaping public safety in 2026 and what they mean for leaders planning practical next steps

Public safety leaders know one thing for certain: the mission is getting harder, not easier. Major incidents are larger and more complex, and extreme weather and episodes of social instability are straining response models built for predictability. At the same time, communities expect faster answers, seamless coordination, and visible accountability every time, without exception.

Behind the scenes, agencies are juggling an explosion of inputs: video feeds, sensors, CAD data, mobile teams, and command staff who all need the same picture, in real time. Add the rising threat of AI-driven cybercrime — where attacks are faster, smarter, and harder to detect — and the stakes climb even higher.

The margin for error is shrinking, while the consequences of downtime or blind spots continue to grow.

That's why the next phase of modernization hinges on building resilient, real-world capabilities: earlier situational awareness, faster and more confident decision-making, and coordination that holds across agencies and jurisdictions when pressure peaks. At the center of it all is connectivity. When networks falter under surge conditions, everything else follows. The leaders who stay ahead are the ones designing for reality — not best-case scenarios — and preparing their organizations for what's next.

Trend #1

AI-powered crime prevention

Stopping problems earlier, not just responding faster

Emergency response has always been about showing up when something goes wrong. What's changing now is the ability to spot trouble before it fully unfolds. AI is helping agencies shift from reactive after-the-fact responses to recognizing risks earlier and responding with greater intention.

This shift is most visible in how agencies use video, especially CCTV. Instead of officers watching multiple feeds at once, AI helps surface what truly needs attention. Predictive analytics can look at patterns across time, location, and behavior, scanning live or recorded video and past incident data to flag abnormal activity.

AI doesn't replace human judgment or make public safety decisions. Rather, it alerts agencies to issues that may warrant a closer look. That early signal can make the difference between preventing an incident and managing the fallout.

In the U.K., police forces such as the London Metropolitan Police have tested AI-powered video tools during major public events. These pilots often include dedicated 5G

capacity so that critical blue light video and data aren't slowed down by public network traffic. At crowded events such as football matches, concerts, and demonstrations, that level of network reliability matters. In these environments, AI can flag crowd buildup, abandoned items, unusual movement, or vehicles that warrant further analysis by human eyes.

Emergency services and public safety agencies see clear benefits from this approach. They can identify potential issues earlier, giving leaders more time to assess situations and respond appropriately. They can also deploy personnel more strategically, improving overall effectiveness. Agencies maintain clearer situational awareness and better protect officers in the field.

To be useful in real operations, those insights have to move rapidly. When conditions change, even knowing a few minutes sooner can help agencies organize a timely, coordinated, and effective response. 5G connectivity helps ensure AI alerts and video reach the right teams fast enough to shape decisions, not just document what happened.

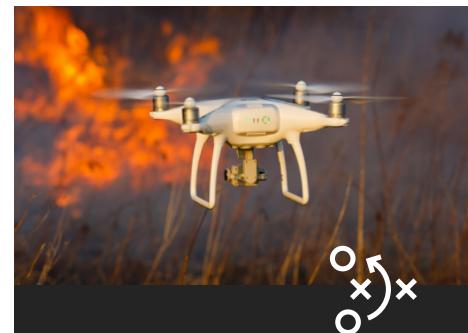
Trust must come first

Technology is only an advantage if the public trusts how it's used. That means it must be accompanied by clear rules, transparency, and oversight. This is especially true in regions where privacy expectations are high. Public safety agencies should be aware that how they use AI matters just as much as what the technology can do.

Images courtesy of Adobe Stock

Trend #2

Drone-based disaster response


Seeing the situation before putting staff and citizens in harm's way

Drones help safety and emergency response teams see what's happening before they send personnel into unstable conditions. That early visibility supports safer routing, smarter staging, and quicker decisions when minutes matter. But the value isn't the drone alone; it's getting that view to the people coordinating the response. Reliable, secure field links — such as 5G — make live video and telemetry usable across the incident team, not restricted to on-scene personnel.

One approach uses drones as part of a tethered, autonomous situational awareness system designed for emergency services. The system can fly autonomously up to about 45 meters (approximately 150 feet), operate in rain, wind, or snow, and be launched and adjusted in seconds through an app.

Because it does not require someone to actively control or monitor the flight, responders can stay focused on the incident itself rather than piloting. The tether also enables long-duration operation, including continuous stay aloft when power is available, with automatic landing if winds become unsafe.

Australia provides a real-world illustration of why this is helpful. During wildfire response across vast, remote terrain, drones can help track fire movement and identify hotspots earlier, giving leaders better information to shift crews and resources while protecting both responders and the public. 5G field connectivity helps ensure drone feeds and sensor data reach incident command in real time.

Clear rules make drones dependable

Drones work best when agencies treat them like an operational capability, not a gadget. That means clear training and protocol: who launches, when they launch, how air operations are coordinated, and how data is handled. When teams know the playbook, drones become dependable "eyes" during critical moments.

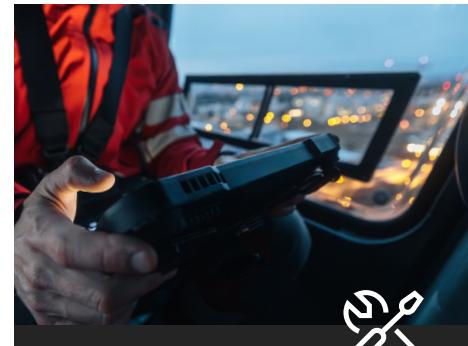
Images courtesy of Adobe Stock

Trend #3

Mobile command centers

Taking intelligence to the scene

Real-time crime centers (RTCCs) are still, for most agencies, fixed sites that serve as central hubs where teams combine video, dispatch information, communications, and analytics into one shared operational view. RTCCs provide an intelligence layer that supports faster decisions across agencies.


As the forward operating node, mobile command centers (MCCs) are the foundation of on-scene command, providing control and situational awareness at the incident scene. What's new is their integration with real-time crime centers, which allows agencies to push RTCC-driven analytics directly to field commanders.

Agencies use mobile command centers at large incidents and planned events so on-site teams can align in real time, while the RTCC continues to manage the operational picture — monitoring, validating, analyzing, and pushing relevant insights and video to the field.

Secure, high-bandwidth links keep the RTCC and the MCC in sync, allowing decisions,

data, and video to flow reliably and securely in both directions. This helps maintain a single operating picture from the hub to the incident scene. Mobile command depends on multi-path connectivity — 5G with failover — to keep that picture intact as units move, coverage shifts, or one link degrades. These units typically use both cellular and satellite links, so if one network degrades, the other can carry out essential operations. That redundancy matters most during disasters, complex events, and rural response.

The Wyoming Highway Patrol (WHP) in the U.S. has done this successfully. Alongside its patrol fleet modernization, WHP created a mobile command center for emergencies, including in areas with limited connectivity. The vehicle supports secure, multi-agency work on laptops and tools, including videoconferencing, even across vast terrain such as Yellowstone National Park's more than 2 million acres (8,000 km²). To keep operations running, WHP established a network failover solution using cellular and LEO satellite networks, so connectivity continues even if one network slows or drops.

Shared tools build stronger support

RTCC investments gain momentum when they serve multiple groups. When police, fire, medical services, and utilities all benefit, it becomes easier to build buy-in and sustain long-term support.

Image courtesy of Adobe Stock

Trend #4

Autonomous public safety systems

Letting machines handle the routine so personnel can focus on decisions and action

Automation is helping emergency service and public safety agencies monitor more things at once without adding to their workload. The strongest use cases don't try to replace people. They take routine tasks off the team's plate, surface key information faster, and keep operations moving when staffing and time are tight.

One example is public-facing automation in the U.K.: Agencies are increasingly using chatbots to help residents get answers quickly on blue light websites, rather than tying up phone lines with basic questions. These chatbots complement the U.K.'s 101 non-emergency phone line, which can triage or escalate issues as needed.

Another practical automation example is smart traffic intersections. In the U.S., some intersections can detect approaching emergency vehicles and adjust signals to create a safer path through. This helps ambulances and fire apparatus move swiftly and reduces risk to other vehicles and

pedestrians. Similar capabilities are also being implemented across parts of the U.K.

On the operational side, always-on monitoring is expanding in transportation environments. One use case is rail, where cameras and AI scan rail lines for anomalies and monitor conditions for potential risks. This allows teams to intervene earlier rather than relying on periodic manual inspection.

Finally, automation is showing up in a place where every global agency feels it: documentation. AI-assisted reporting can reduce the hours spent on report writing at the end of a shift, keeping officers available for patrol and response rather than tied to desk work. Even small time savings add up when staffing is tight.

Automations deliver value by keeping critical devices connected, so data moves securely between the street, dispatch, and the back office as incidents unfold.

Public safety personnel still make the call dependable

Automation can flag issues and surface options, but it doesn't replace judgment. Trained professionals review the information, make the decisions, and stay accountable for the outcome. Human oversight strengthens trust inside the agency and with the public.

Image courtesy of Getty Images

Image courtesy of Adobe Stock

Trend #5

Next-generation networks

The part no one sees, but everything depends on

None of these tools work without the right connectivity. Networks have quietly become one of the most important safety systems agencies rely on.

For agencies investing in modernization, connectivity is the foundation, and next-gen networks make it resilient. 5G supports high-quality video and live data flows, while edge computing processes information closer to where it's collected to reduce delays. SD-WAN routes traffic intelligently, so critical applications stay up and responsive. Together, these technologies help agencies stay connected when it matters most. When bandwidth spikes or conditions degrade, this foundation is what keeps the operational picture intact.

Concrete examples are already emerging. Singapore's Singtel has demonstrated how 5G Standalone (SA) and network slicing can reserve dedicated bandwidth for public safety at high-congestion events, enabling agencies to continue moving video and operational data even when the public network is saturated.

Across the U.K., forces have been testing 5G slicing as part of broader efforts to modernize emergency communications, alongside the

national Emergency Services Network (ESN) rollout targeted for late 2029.

And as U.S. agencies scale video and computer vision, they're using edge AI compute to process more data locally, so everything doesn't have to traverse the cellular network. That reduces bandwidth pressure and cost.

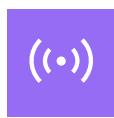
Across the Asia-Pacific, agencies are upgrading emergency networks to blend cellular and satellite connectivity. This approach provides coverage across large regions and helps maintain communication during extreme weather and disasters. It also gives agencies options, so they can route traffic over the best available link as conditions change.

Australia reflects the practical driver behind that shift: large portions of the geography have limited cellular coverage, so satellite increasingly serves as an essential component. It supports live data in the field and allows teams to route different types of traffic over the best available link. In parallel, some agencies are using private 5G or LTE in controlled environments such as campuses, facilities, and major venues, where they need predictable coverage, security controls, and performance even when public networks are congested.

Build for change, not perfection

The goal is not to use a single best network. It is to build a flexible foundation that can adapt as needs evolve. Agencies that prepare for change today avoid costly rebuilds tomorrow. That flexibility matters most when operations shift from routine to surge.

Images courtesy of Adobe Stock


Plan now for the future of your public safety operations

How leaders can adapt best practices for local needs

It's easy to get pulled toward the newest tool or the flashiest demo. Agencies that get the most value take a different approach. They start with what they're trying to achieve operationally, then adopt technology that fits local realities and earns public trust. Here are practical ways to do that:

Start with the mission, not the tool. Choose technology that clearly supports the mission of protecting lives and keeping people safe. Avoid "technology for technology's sake," especially if it adds friction without improving outcomes.

Treat connectivity as an operational safety layer. Leaders want a ubiquitous network that works, regardless of bearer. Plan for resilient connectivity that can use multiple paths, including cellular, satellite, and legacy radio, so critical communications hold up when conditions change.

Use your size and structure to your advantage. Large organizations can have more resources but more complexity. Smaller agencies can often move faster. Either way, pick steps you can execute well and build momentum from there.

Design for interoperability, not a patchwork. When neighboring agencies buy different systems, collaboration gets harder. Favor approaches that help systems talk to each other and reduce operational fragmentation.

Keep the workflow simple for frontline teams. Tools fail when they become "one more system" with another login, another screen, and another set of steps. Prioritize solutions that fit into daily work rather than creating a

Build in governance and public trust from day one. Privacy expectations and oversight requirements differ by region, but the principle holds everywhere: define clear rules, accountability, and boundaries early, especially

Let local context set priorities. Needs vary widely by geography and operating environment. Major cities face different pressures than rural counties, and funding, events, and threat profiles shape what matters most.

Make it part of an all-in strategy. The most effective agencies treat modernization as a coordinated, multi-year approach, not a series of disconnected purchases.

Done well, this approach helps leaders modernize with purpose, avoid costly dead ends, and build capabilities that hold up in real-world operations.

Public safety modernization in 2026 won't be achieved with a single tool. It will be won by agencies that build reliable, interoperable capabilities, enabling them to see risk sooner, coordinate faster, and act with confidence when conditions change. With resilient connectivity underneath it all, teams can keep voice, video, and data moving in the moments that matter most.

Learn more about enterprise wireless solutions